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Quantum conductance of multiwall carbon nanotubes
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An analysis on the conductance of multiwall carbon nanotd®B&NT's) is presented. Recent experiment
indicated that MWNT's are good quantum conductors. Our theory shows that tunneling current between states
on different walls of a defect-free, infinitely long MWNT is vanishingly small in general, which leads to the
guantization of the conductance of the MWNT’s. With a reasonable simple model, we explicitly show that the
conductance of a capped MWNT can be determined by the outermost wall for an infinitely long nanotube. We
apply the theory to finite MWNT’s and estimate the generic interwall conductance to be negligible compared
to the intrawall ballistic conductance.
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[. INTRODUCTION two-wall tube is shown in Fig. 1. Tunneling of an electron in
an unperturbed eigenstate on one wall to one on the other
Carbon nanotubes are one of the most interesting neynust obey both energy conservation and Bloch wave vector
materials discovered in recent year€onsiderable theoreti- Conservation, as the complete structure has a well-defined
cal and experimental effort has already been focused on pr@€riodicity in the axial direction. As can be seen from Fig. 1,
dicting and measuring the properties of various classes dPf general position of the Fermi level, it is impossible to
tubes—multiwall nanotube@IWNTs), singlewall nanotubes tunnel between two states at the Fermi level and conserve

(SWNTS, and ropes of nanotubdShese materials promise tube crystal momentum. Thus, for an infinitely long com-

exceptional mechanical strength and unusual electronic pmlpjensurate MWNT, any overlap matrix elemewty|V/| ¢ouy

erties, hence motivating a great deal of investigation intoWhICh would tend to mix the two states B will be exactly

their use as nanoscale device& In this paper we investi- zero. In this case, if a closgad MWNT s immerged in mercury
gate the physics of quantum coﬁductance in the SWNT's ant complete an electrical circuit as described in Ref. 19, only

) . . e outermost wall's electronic states will couple signifi-
MWN.TS' For a pgrfect SWN.T withn band crossing the cantly to the liquid metal and so the conductance measured
Fermi level, a naive application of Landauer formi@f&

within the one-electron picture would yield a ballistic con- will be that relevant to just the outermost wall. In the case
ductance ohG,, whereG,=2e?h is the quantum unit of that energy baqu are ngarly de'generate at very klmae
conductance I%’xten ding %his argument to a MWNT woul dto_rs, however, mterv_vall interaction can I_ead to eigenstates

" . with measurable weight at inner waff3lt is also possible
lead to a ballistic gonductance Gi=2G;, whe_zr_eGi IS the for tiny gaps or pseudogaps to form at the band crossing
conductance of thith wall, if all the walls participate in the

; oints due to the interaction. In practice, the Fermi level is
transport of electrons. However, for MWNT’s with closed P b

S unlikely to be located exactly at the tiny gap region, and the
caps, recent measureme:'ﬁﬂsave |_nd|cated that the conduc- electrical conduction is not affected by the formation of gaps
tance for such systems is quantized to the valu efG,.

. . . . or pseudogaps.
Thus, it appears that effectively only one channel is available P gap

for cor_ldu_ction in these multiwall systems, even though most Il. THEORETICAL ANALYSIS
metallic single-wall carbon nanotubes have two bands cross- _ _ _ _
ing the Fermi level. The analysis of the incommensurate MWNT is more in-

In this work, we argue that this rather surprising finding volved. It is not possible to use conservation of crystal mo-
may be explained by the blocked interwall tunneling current
between the states of different walls and that, effectively, ’
only the outermost wall is active in the electron transport
when current is injected to the body of a capped MWNT. We
first consider a two-wall carbon nanotube. Once we establish
the behavior for the two-wall tube, the generalization to mul-
tiwall tubes is straightforward. Let the unit cell lengths along
the inner and outer tube axes bBg anda,,, respectively.
Two distinct cases naturally arise: the structure is either com-
mensurate &in/aout i_s rationa)_or inc:(_)mmens_uratea(n/aOut _ k along tube axes
is irrationa). The first case is easier to dispose of and it
illustrates the second case, so we discuss it first. As a con- FIG. 1. Schematic band structure of a two-wall MWNT in posi-
crete example, we may consider a two-wall tube with bothive k direction. Due to different curvature effects, the position of
walls of (n,n) type®~18A schematic band structure of this the band crossing shifts to different values.

Energy
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mentum as an exact argument to dispose of any tunneling 1.5
between states on different walls Bt, as our complete
structure does not have long-range periodicity, and hence,no ~ r  _—=—_ -
crystal momentum can be defined for the structure as a . AN
whole. To investigate the way tunneling occurs among these / e \
states, we adopt Bardeen’s tunneling Hamiltonian / / \
formalism?' We demonstrate that there is a selection rule for 0.0 {\ ,‘CO -
transition between Bloch states of adjacent walls of an infi- y /
nite MWNT. Using this simple but reasonable model, we \ e y
also give an estimate of how well this selection rule holds for AN e
finite length MWNTs. T
Bardeen’s formalisft in calculating tunneling current to

first order for small voltage and temperature is 15, 5 00 15

ReTl

ImT

2me? 5

7 V% IM,[*8(E,~Er)8(E,~Ep), (1) FIG. 2. T Koy, Rin) in complex plane for smak,, as given by
Eq. (12). The thin solid line is fork,,=0, the thick solid curve is
for Kou=0.5G.:, the dash curve is fok,,=G,,, and the long

h? o - - - -~
M sz_meJ' ds. (¢;V ,— i,V ¢Z)_ 2) dash curve is foky=1.5G ;.

The integral is over any surface region within the tunneling?VhereS is a cylindrical surface midway between the inner

barrier. The essential part of the problem is in evaluating thénd outer walls. Similarly we define andI" as the above
matrix elementM ,,. To do this, we expand the wave func- expressions withj, and ¢, interchanged. With these defi-
tions of each isolated wall of the MWNT in terms of local- nitions, we can rewrite the tunneling matrix element as
ized orbitals in the tight binding approximation or more gen-

erally in terms of Wannier functions. Then by suitable 1 72
rearrangement of terms, we can reproduce khselection M (Kin ,Kou) = ——= =—
rule of commensurate MWNT’'s and get similar selection VNipNgye 2M Rin
rule for infinite length incommensurate MWNT's. For finite - o
length MWNT’s, we modeled the overlap integral needed for = I'(Kout, Rin)}- )
the matrix element calculation and estimated the correspond-

ing conductance. We note at this point that, because of the We note at this point that, from the form of Eq®)— (4),
overall cylindrical symmetry of the MWNT's, ifio andyin M (Kin ,Kou) = M (Kin— NGy, ,Kou— MGy, for any integemn
are of different rotational symmetry then there will not be _ ., (éin and é‘out are the reciprocal primitive translation

any tunneling between the two states. However, we shall Sgfo o of the inner and outer tube, respectiveliie shall
this special case aside, and consider the more interesting 98ake use of this fact in our analysis below

eral case.

We use in and out to index the inner and outer walls of
different periodicity. The unperturbed individual wall states [l INFINITE MWNT
(with no interwall interactiop within a tight-binding model
may be written as

el (Kout—Kin)- FEin{l" ( Eout, ﬁin)

For a commensurate MWNT, (Ko, Rin) as a function of
ﬁin can only take on a few discrete values for a gi\ﬁgm.
. 1 o . This naturally gives rise to the selection rule fovectors.
lﬁ(kin,f)z\/?_g e'kin Ringhy (r — Ryp), (3 For the incommensurate case, the problem is nontrivial.
n Rin (Ko, Ry,) for a specificR, is determined by the relative
position of the lattic§ R, with respect to the giveR;,, or
elfourRougy (F—Ry,). (4  equivalently, the distance to the nearest lattice pBigt on

out Royt the right side of this particulalﬁin which takes on the con-
tinuous value from 0O to one lattice constant, of the outer

tube. The values of (Ko, R;,) for differentR,,’s is then a
collection of bounded complex numbe(See Figs. 2 and B.

_ . R o . Unless Ein=Eout or the special case ofzin—néin=kout
f(Rou— Rin)ZJ dS ¢i(r =Rin) Vo T =R, (5 —mG,,, for some integem andn,

H( IZouta F) =

To make the analysis simple, we introduce the following
guantities:

- N - - - N R 1 s . R .
]"( k i R ) = 2 e'kout' (Rout~ Rin) f ( R i R: ) , (6) - 2 e (Kout=Kin) - Rinr ( koutl Rin)
ou n ﬁou‘ ou n \/m ﬁin
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1.5 j N |Rout Rln‘
f(Rout |n) - fOe d (9)
where
) fo=f dS ¢ (NV Boulr). (10
0.0 t .
E In evaluating Eq(6), let us denote the first lattice vectBg,;
on the right side of the particuld;, to be R;,+ a, and the
primitive translation vector of the outer tube to &g,. Then
N N &"’naout n=0,1,2,-~- ( )
Roui— Rin= - - 11
Ry 0.0 15 T —(—atnag) n'=12:-

ReT

N N 1—‘(koutiRin)

FIG. 3. I'(Kout,Rin) in complex plane for larg&,,; as given by
Eq. (12). The solid curve is fok,,=8G,,, and the dash curve is _ 2 e”zout'(éour ﬁin)f - [Rout—Rinl/d
for Kou=8.5G oy = 0
is average over bounded fluctuating numbers and converges foe'k"“t o[ e~ Kour Gousinh a/d) + Sinh( (agy— a)/d)]
to zero for an infinite MWNT. The same argument holds for cosh(ay,/d) — coshk, . a
a general n-wall nanotube and establishes quasi crystal mo- out out” Sout
mentum conservation for long incommensurate MWNT's, (12
where periodicity can be defined only for each wall individu-\ye show the value of as a function 01R for some se-
ally. This selection rule blocks interwall tunneling current |octed values ok, in Figs. 2 and 3.
between the states of different walls& . For an estimate ofT'), we may convert the average over
many terms to an average over the continuous variable
assuming thatv is uniformly distributed between 0 arag,;.
Moreover, for any pair |zm,|20m), once we find|(lzout— Em

For a finite length MWNT, the sums in Eqe) and(7)  —(mG,,—nG,,)| of the order of 2r/L, evaluation of
are over finite number of terms. Still;(ko,Rir) can be  M(k,, k,,) becomes a calculation of
defined to be an infinite sum with negligible error provided 1 ra
that f decays exponentially and the length of the system is out -2 =
much larger than the characteristic decay length. As for the (T (Kourm Gou, Rin)) =~ aoul o I'(Kou=MGour, @) der

matrix elementM (Ki,,Kou), We use the fact thaM (ki,

IV. FINITE MWNT

—néin,Eout—méout)=M(IZm,IZom). For a finite MWNT of = oi _ L _
length L, we can always find integem and n such that Aout 1+ (|Kou— MGyy d)?
[Kout— Kin— (MGyu— NGy)| <2#/L. The integersm and n (13)

should be restricted to values less than the number of un
cells in the tubes. Then the phase factor in & may be set
to 1 and we can estimate the matrix element to be approxi-

lI‘he number ok states for a finite MWNT is of the order of
L/a,,. Such a set of points, with average spacing af R,
may be approximately generated by repeatedly translating

mately vectors of length G, (with I=1, ... L/a,,) back to the
first BZ defined byG, (i.e., IGout—kGin). Thus, for a given
h? Kin—Kout» the most probable combinatiomG,,—nG;,

M (Kin,Kou) = R—E{Hkout M Gout, Rin)
e

Nin R which gives|(l20ut— Ein— (méout— néin)| <2m/L would cor-

respond to amm in the order ofL/a,. If we takemin Eq.

T (Kour— MGout, Rin) } (13) to be of the order of-/a,,, then we can readily esti-
2 mate the averagd’) to be the following:
= {(T'(Koy— MGou, R;
me{< ( out out |n)> <I,>%f_oalut aLUt 2 (14)
472 d | L

- <r(kout_ mGoyt, Rin)>}- (8

This converges to zero very rapidly with increasingrhis is

not surprising because the average It — M Gy, Rin)

should have the properties of the high spatial Fourier com-
We use the following simple model to calculate the quan-ponents off (Ri,— Ry,). The vanishingly small matrix ele-

tity (I') explicitly. Assuming that ments for very long MWNT’s are consistent with the quasi

V. SIMPLE MODEL
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crystal momentum conservation for infinite MWNT's. nation of eigenstates with broad range of Bloch wave vec-
Roughly, the longer the finite MWNT's, the better the selec-tors. The time evolution of the wave packet can lead to siz-
tion rule is obeyed. We note that this argument is valid forable penetration of electrons into inner waftsyhich is not
weakly coupled walls in a MWNT. surprising because the more localized the wave packet is, the
So far, we only include the terms from";ﬁ Yo Terms — more sev_erely it lacks translational symmetry and the weaker
from lﬂouﬁ’ﬂfﬁ are of the same order of magnitude. Thus, thethe q_uasmrystal momentum conservation is. In that case,
most probable value foWl is electrical conductance would be affgcted by. the. tme—
dependent spread of the wave packet in the radial direction.
2 Similarly, MWNT’s composed of perfect and incommen-
(15)  surate SWNT's will have only the outermost wall contribut-
ing to their STM images. However, if the translational sym-
metry of one of the constituent SWNT'’s is broken, interwall
interaction may modify the outermost wall images.

hz fO Qout

7 Yo Bout/ Rout
2me 472 d

L

Min out™

A is a factor of order 1 and the interwall currdgy; is given

by
2me? ) VI. CONCLUSION
IintzTV|Min,ouJ Din(EF)Dout(EF)y (16)

In summary, we have presented an analysis of the quan-

whereD (Eg) is the density of states at Fermi energy. To gettum conductance Of MWNT's, based on quasicrystal mo-
mentum conservation for the weakly coupled one-

. - ~ 2
iLrOUQh/ ezsf;[;rﬁate, we - putd=~aou, fo~1/ao,. D(EF) dimensional system, using Bardeen’s tunneling Hamiltonian
~LMeQoyl 17 formalism. Using a simple model we show that the conduc-

| 2e2/a..\2 tance of a defect-free MWNT is dominated by the outermost
G"“:V%T %Ut (17)  wall, i.e., vanishingly small interwall conductance compared
to intratube ballistic conductance for finite but reasonably
If we putL=1 um, a,,=1 A, we get long MWNT.
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